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Abstract-Let us assume that two elastic solids M and N are topologically equivalent (homeo­
morphic) and SM is a solution of some boundary problem for the solid M. Taking into account
these facts we want to know when it is possible to build a solution SN for N. There is no simple
answer because it is necessary to take into account the metric properties of M and N. We want to
modify (if it is required) the equations of the theory ofelasticity and to assign the conformal weights
to the field values so that the equations should be unchanged after the conformal change of metric.
In other words, we work not with some appointed metric, but with the classes of metrics : any two
metrics from the class are conformly equivalent. © 1997 Elsevier Science Ltd.

I. INTRODUCTION

Consider two elastic solids M and N. Let us assume that they are topologically equivalent
(homeomorphic). Let SM be a solution of some boundary problem for the solid M. Taking
into account these facts we want to know when it is possible to build a solution SN for N.
We have not a simple answer because it is necessary to take into account the metric
properties of M and N.

Formally, we consider the elastic solids M and N in the stressed state. Assume that
they are Riemannian manifolds: 9 and h are the metrics on M and N, respectively. Suppose
there is a diffeomorphism qJ: (N, oN) -+ (M, oM) ; o-the designation of the border. M and
N are not supposed to be isometric, therefore, in the general case h #- qJ*g, where qJ* is the
standard operation of the tensor's transfer under the diffeomorphism (the tensor qJ*g is the
so-called "pullback" tensor [see, e.g., Dubrovin et al. (1986)]). For example, consider the
statically determined problem for M without body forces (we use the classical linear model
of the elasticity) :

(1)

where P is the vector of external forces, a is the vector-valued 2-form (in the language of
exterior forms), The form a can be written as:

(2)

where (Xl, x2, x3) are some coordinates on M, Bkmn is the Levi-Civita tensor: ± (det(g)) 1/2 or
0; det(g) is the determinant of the metric g; aik is the Cauchy tensor of stresses. Dg is the
exterior differentiation corresponding to the metric 9 :

If a is the solution for eqn (1), then the 2-form qJ*a is consistently determined on N. But
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generally speaking, the relation

A. V. Mikunov

(3)

is not correct because Dh i= Dcp.g. The adequate situation also occurs in the other problems
of the elasticity theory: we can not apply cp to transfer the solutions from M to N.

Suppose there is a diffeomorphism under which g and hare conformly equivalent, i.e.,
h = ),?cp*g, ),,-some function, )" i= O. For example, consider a sphere without the northern
pole and a plane, then cp is the stereographic projection. Moreover, if M and N are two­
dimensional then cp always exists locally (the theorem on the isothermic coordinates). In
the two-dimensional case we have cp*g = ),,2g , where cp is any (bi)holomorphic function. In
three dimensions, cp is motion, stretch, inversion and their composition. These trans­
formations generate the group which is isomorphic to the group 0(4, I), the global con­
formal group of sphere is SL(2, C) [see Dubrovin et al. (1986)].

We want to know when DhCP*u = 0 if Dqu = O. The answer appears to be complex: U
ik

should be the conformal density of weight (- n - 2) and the trace of tensor of stresses
should be zero:

(4)

where a'ca = }/"aca, Ya = ),,-'VaA; V~, Va are the covariant derivatives corresponding to h
and g, respectively; n is the dimension of M [see Penrose and Rindler (1984) or Birrell and
Davies (1982) for the notation].

For example, it is well known (the isotropic case) : if the plane strain occurs without
change of volume then the tensor of stresses is traceless [see, e.g., Hahn (1985)]. Also it is
known that in problems of torsion the trace of the tensor of stresses equals zero. Conse­
quently, the equations of equilibrium are conformly invariant (c.i.) : V~u"a = )"NVaaca. And
cp* a is the solution for (3).

Note that the classical Kilosov-Mushelishvilli's method (which uses the complex
function of stresses and the conformal transformations) can not be applied to the two­
dimensional case because the biharmonic operator is not c.i. (see below, Section 4).

Using the above arguments we wish to construct the conformly invariant theory of
elasticity. We want to modify (if it is required) the equations of the theory of elasticity and
to assign conformal weights to the field values so the equations should be unchanged after
the conformal change of the metric. In other words, we work not with some appointed
metric, but with the classes of metrics: any two metrics from the class are conformly
equivalent. For the 2-surface these classes (the conformal structures) are numbered by
means of a Teichmiiller space and a moduli space. The moduli space is a factor-space of
the Teichmiiller space after action of the modular group SL(2, Z) [see, e.g., Besse (1987)].
In particular, if the surface is homeomorphic to the standard sphere ~, then all metric
structures are conformly equivalent and the moduli space is trivial (the so-called "Riemann
theorem": if N is diffeomorphic to S2 (= M), then hand g are conformly equivalent). So,
let us suppose that the surface M is an elastic solid, M is homeomorphic to the sphere and
the tensor of stresses has the trace which is equal to zero. Then the elastic effects will be
described identically (within conformal corrections) for any homeomorphic surface N.

In the general case, for a Riemannian surface of genus k = 0 (a sphere), we have not
an obvious formula for the conformal diffeomorphism between M and N. Moreover, for a
surface of genus k > 0 (a sphere with k handles), the moduli space is non-trivial (there are
"many" conformly non-equivalent metric structures). Generally speaking, the conformal
structures of Riemannian surface of genus k > 2 are described by moduli. The quantity of
moduli equals 3k- 3. For example, if the surface M is a torus, then the Teichmiiller space
is the upper (open) half-plane (on the complex plane) and the quantity of moduli (the
quantity of conformly invariant complex parameters) equals unity. However there is an
extensive class of two-surfaces, so-called minimal surfaces. For these surfaces all
calculations can be done.
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The traceless tensor of stresses is the limitation for the applications of the conformly
invariant theory of elasticity. However if the tensor of stresses is a function of some
parameter t: <T(t), then there always exists the value t = to under which trace (<T(to)) = O.
Indeed (Poincare idea), consider the infinite dimensional space of the tensors of stresses L
in "general position" (see Arnold (1978) for discussion). The set II = {<Tikltrace(<Tik) = O}
is "the surface" in L, i.e., II has a codimensional unity. Since <T(t) is "the curve" in Land
<T(t) is transversal to II, it follows that <T(t) crosses the surface II.

2. BASIC EQUATIONS OF THE LINEAR THEORY OF ELASTICITY

Consider the basic relationships for M and N (without body forces and thermodynamic
effects) :

Dg<T = 0, D,,<T' = 0 (5)

2eik = gik - gfb 2e;k = hik - hfk (6)

<Tik = Aikmnemn, a'ik = A'ikmne~m (7)

Rfk = 0, Rf/ = 0 (8)

R ik = 0, R;k = 0 (9)

where gfb hfk are the metrics on M and N before deformation; gib hik are the metrics after
deformation; Rd" Rfk" Rib R;k are the Ricci tensors for these metrics, respectively. The
metrics g and hare conformly equivalent: hik = ).?(q>*gh for some diffeomorphism q>. We
want to know when eqns (5)-(9) are c.i.

2.1. The equations ofequilibrium
The equations of equilibrium (5) are conformly invariant if the trace of the tensor of

stresses equals zero and <Tik is the conformal density of weight (-n-2) (see eqn (4»:

where

2.2. Hooke law
If the equations of equilibrium are conformly invariant, then the sum of weights A dkmn

and e;'m equals (- n - 2). Let A'ikmn be the conformal density of the weight Q: Adkmn = ).QAikmn

then, from eqns (5)-(7) :

(11)

For the ease of notation it is admitted: T = q>* T, where T is a tensor. From eqns (6) and
(11) we obtain under Q = - (n+4):

(12)
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Under Q = -(n+2):

A. V. Mikunov

(13)

In particular, if M is isotropic then in coordinates on N:

where fl., v are the Lame's coefficients.

2.3. Ricci tensor
If the metric h is not flat then the equations of compatibility of strains (8)-(9) are not

c.i. It follows from the law of transformation of Ricci curvature under the conformal change
of the metric [see Penrose and Rindler (1984); Birrell and Davies (1982); Besse (1987)]:

The scalar curvature transforms as :

(18)

i.e., R~ =I 0, R' =I 0 (in the general case). We interpret "the superfluous terms" into (17) as
the tensor of incompatibility of strains B, which describes the distribution of discontinuities
in a continuous media [see Kroner (1958), Kroner (1961)]. Under n = 3 we have:
Bj = hikBkj = ..1.- 2[iYj - ViYj +<55(lYk +VkYk)], under n = 2 the Ricci tensor is defined by its
trace, therefore we may use the function: B = A-2VkVkIn A. So, if we have a solution of the
problem for M: Dga = 0, (Jik = Aikmnemn, 2emn =(gmn-9~n), Rij = 0; 9ikaik = 0 then on N
we obtain automatically: Dha' = 0, a'ik = A'ikmne;"", 2e;"n = (hmn -h~n), R;j = Bij. Where
hmn = A29mn, A ,ikmn = AQAikmn, e;"" = ;/emn , (J'ik = A-(n+2)aik ; Q = -(n+4) or Q = -(n+2),
P = 2 or P = O.

2.3.1. The continuum theory ofdefects. It is well known that in the Kroner theory:

VxexV = ~ (19)

where e is the tensor of strains, ~ = (IX X vy is the tensor of incompatibility, (...y is the
symmetrization, IX is the density of dislocation. The formula (19) follows from the equation
R(ik)(r) = 0, where R(ik/r) is the symmetrical part of the Ricci curvature of the non­
symmetrical connection r (the connection with a torsion), i.e., in the common case
Rik(r) =I Rki(r). We have the common formula for the connection r (gik is some Riemannian
metric) [see Schrodinger (1950)]:

where



is the Christoffel connection,
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is the skewsymmetric tensor. Note that the term gS/Tuk is c.i. The Ricci curvature of the
connection nk can be written as :

(20)

Rik( { }) is the (symmetrical) Ricci tensor of the Christoffel connection, Vk is the "ordinary"
covariant derivative corresponding to gik. If hik = ),?gik and gik are flat metrics then:

where Vic is the covariant derivative corresponding to hik . The eqn (21) connects the
conformal anomalies and the torsion. The eqn (21) follows from (17) and (20) (under n = 2
we use the relation Rae = Rj2gac)'

2.4. The displacement vector
It is known that in the classical linear theory R~k = 0 and Rik = 0, so

(22)

where Uk is the displacement vector. In the case of small strains

(23)

The eqns (22) and (23) are not c.i. In particular, for the case (23) we have:

where it is assumed that Uk is the conformal density of weight Q.
Therefore the displacement vector (in contrast to the tensor of strains) is not conformal

density. Then, after the replacement 9 -> h = ),?g, we calculate by means of the Cesaro
formula:

where e;k = ),Peik> r is a path, u?, w~, uo;, WO;k are the primary displacements. It is important
to understand that in eqn (24) hand hO are flat metrics. If Q = 0 (see eqn (13)) then we
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have u~ = Uk+~k from eqn (24), where ~k is "the anomalous displacements":

(25)

2.4.1. The important note. Consider an alternative theory of strains. We define the
displacement covector as the conformal density of weight 0 (gik = bik ) :

Then Bki is a non-integrable distortion, i.e., Bak dxa i= dHb where H k is some (covector­
valued) O-form. By analogy with the gauge theory of defects [see Cadic and Edelen (1983)]
we consider the tensor At as "the gauge field". After the replacement 9 -+ h = ).2g we have:

We define the tensor of the plastic strains as

Then, e;k is the tensor of the general strains. We have:

-the tensor of incompatibility;

-the density of dislocation.

2.5. The boundary conditions
The diffeomorphism transfers points, tangent vectors and covectors. Consequently we

may transfer the boundary conditions from M to N. After the conformal change of a metric
normal vectors are transformed to collinear vectors. Therefore, if the field values are the
conformal densities, then it's simple to transfer the boundary conditions from M to N.

2.5.1. The case ofexternal forces: al6M = P (i.e., ajknk = pi). It is necessary to assign
the conformal weights to the normal covector n and the vector of external forces so that:
weight(a) +weight(n) = weight(P).

For example, in the important two-dimensional case, where the boundary of M is the
plane curve, we have

( ·2 '1)X X , ~l

n = - lxi' iii --> n =), n

(n is the vector), where (Xl, x 2
) are arbitrary conditions of M, x = dxldt, Ixl = Jgik.XiXk, t

is a parameter on the curve; consequently, weight (P) = (- 4) - ( - 1) = (- 3).

2.5.2. The case ofthe displacement (co)vector Uj. We know that the displacement vector
is not the conformal density (see Section 2.4), therefore, in the common case, on N:
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U;laN =f:- ;SuiI CN ; however under Q = °(see eqn (25))
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2.6. The notes
a) If (Jik = (Jik(emn) = Aikmnemn + jfkmnpqemnepq + ... (the non-linear theory), then we have:

weight (Bikmnpq) = weight(aik) - 2(weight(emn)).
b) Let hand 9 be the flat metrics, then the equation for the Lame's potential <D:

VkVk<D = °is c.i. This follows from the law of transformation of the harmonic operator.
The function <D has the conformal weight (2-n)/2:

(
v,av, + ~ (n-2) R')<D' = ;-(n+2)/2 (vav + ~ (n-2) R)<D

a 4(n-l) . a 4(n-l) .

c) If we consider: (Jik = Rik -~ Rik [see Pauli (1958)], n = 2, then the equations of
equilibrium (without body forces) are satisfied and they are c.i. because 9ikaik = 0. But in
this case the conformal weight of the tensor of stresses equals zero (see the formula (4),
where the conformal weight equals (-4)).

d) Consider the case Q = - (n+4) and n = 2: R~k = 0, m/ = 0, Rik = 0, R;k = 0. Then
we obtain from h~k = ),.z9~k : the equations (R = 0, R' = 0) and (~gO In A= 0, ~g In A= 0) are
equivalent; where ~gO, ~g are the harmonic operators corresponding to 9~k and 9ib respec­
tively. If 9~k = 9ik+ej;k = bik+ej;k (the classical linear theory) then we have:

where e~ 0, j;k is some metric, CI. = III +122'
e) If Q = -(n+2) and n = 2 (R~k = 0, R~/ = 0, Rik = 0, R;k = 0) then we have

f) We consider only two alternatives under a choice of weight Q (formulae (12), (13)).

3. TWO-DIMENSIONAL PROBLEM (THE ISOTROPIC AND ANISOTROPIC CASES)

3.1. The biharmonic operator
Consider how the biharmonic equation Nt/J = VbVbVaVat/J = °changes under the con­

formal change of the scale. Let t/J have the conformal weight P:

~'2t/J' = V,bvbv,av:t/J' = AP-4[P2{Q2ybYb+2QlVb+VbVb+QVbYb}'tYat/J+

+ 2P{Q2 ybYb +2Qlvb+VbVb+QVbYbhaVat/J +

+ P{Q2 ybYb +2QlVb+VbVb+QVbYb} vayat/J +

+ {Q 2ybYb +2QybVb+QVbYb} vavat/J +~2t/J],

where Q = P-2. Under P = 2 we obtain:

(26)
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under P = 0:

A. V. Mikunov

(27)

Note that if 9 and h are flat metrics, then 'Vbyb = 0 (see eqn (18)).
The conclusion: in the general case, the biharmonic operator is not c.i. under any

choice of weight.
Nevertheless, the Erie's function (the function of stresses) F is harmonic. It follows

from the two-dimensional equations ofequilibrium, from the equations ofcompatibility and
the formulas for the components of the stress tensor. We have (g = oikdxi d.0 = dx2 + dy2) :

on the other hand (see eqn (10)) the trace of tensor of stresses is

Consequently, the equation il(a l
! +(22

) = 0 is trivial and F is harmonic (in the isotropic
case). Therefore the basic equation of the conformly invariant theory of elasticity (in the
plane problem) is the harmonic equation. The Erie's function is the conformal density of
weight zero (see Section 2.6 (b)).

In the orthotropic case we have:

where E;, J1.l2 are the technical constants. Taking into account that

(in the general case) we obtain:

i34 F i34 F i34 F
-=-=--=0
i3y4 i3x4 i3y2 i3x2 .

It is easy to understand that Fis also harmonic. Ifwe consider the general anisotropy, then
the function of stresses is also harmonic.

We introduce the function

i3F i3'¥ i3F i3'¥
<J>:<J>=F+i'¥, i=j=l, - ---i3x - i3y' i3y - - i3x

(the Cauchy-Riemann conditions), i.e., F and 'II are conjugate. It is easy to show that (refer
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to [Hahn (1985)] for the notions):

jJ 2 F I _
a22 = - = -(I1>/I(z) + 11>/1 (z))ux2 2

u2 F I _
a l2 =a21 = ---= -i-(I1>/I(z)-I1>/I(z)).uxuy 2

By analogy with the first and the second Kilosov's formulas we get:

(Jxx +ayy = 0

0"xx - 0"yy +2iO"xy = - 211>/1 (z).

In the isotropic case we have:

3329

where E is the Young's modulus, v is the Poisson's coefficient. The third Kolosov's formula
1S:

E -
(1 +v) D = -11>'(z)

where D = ux+ iuy is the complete displacement vector. If the vector of stresses Px+ ipy is
given as the function on the outline s, then we may write the boundary conditions as:

or: 11>' (z) = 91 + i92, where 9, and 92 are some functions. The stream of forces between
points A and B can be written as:

The moment of stream of forces with respect to the beginning of coordinates:

MAD = [Re(z2F(z,z))]~ = [Re(zl1>'(z))]~.
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If the displacement vector is given as DO = u~ + iu~, then:

E -
(1 +v) DO = -(1)'(z).

3.2. The theory ofelasticity in a conformal gauge
Let (x, y) denote isotermic coordinates on the surface (N, h): h = ds2 =

e'Pg = e'P( dx2+ dy 2) = e'P dz dz-"the conformal gauge" [see, e.g., Green et al. (1987)],
where z = x + iy. We define the standard basis (x, y) and (z, z) :

dz = dx+idy, dz = dx-idy

~ = ~ +~ ~ = i(~ -~)
ax az oz' oy az az

I I
dx = 2"(dz+ dz), dy = 2i(dz- dz).

For example, if in the coordinates (Xl = x, x 2 = y) we have some symmetrical traceless
tensor Tik dxi dxi, then in (z, z) coordinates, only T + + "# 0 and T __ "# 0:

T = Tikdxid~ = T++ dzdz+ L_ dzdz+2T+_ dzdZ = (2T+_ + (T++ + L_))dxdx

+ (2T+_ -(T++ + L_)) dydy+2i(T++ - L_) dxdy,

but:

The metric hik = e'P()ik has components:

Moreover, h is the covariant constant tensor:

The equations of equilibrium are:

Since only (1+ + "# 0 and (1- - "# 0, it follows that
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If u' = e- 2q>u, i.e., u is the conformal density of weight (-4) (formula (10)), then:

Now we can obtain the relations between real and complex coordinates:

all = uxx = - uyy = (u + + +a __ ),

U12 = axy = O'yx = i(O'++ -0' __ ).

From (28) we have that the component 0'- - is a holomorphic function:

3331

(28)

(29)

From eqn (29) it follows that 0'- - --+ °under z --+ 0, but it is impossible if N is homeomorphic
to a sphere. If N is a Riemannian surface of the genus one then the component a- - can be
only constant. In the general case, for a Riemannian surface of the genus k > 2 the space
of solutions for eqn (29) has the dimension (3k-3) (the number of zero modes). The
number (3k - 3) is proportional to the Euler characteristic of Riemannian surface (the
surface of genus k has the Euler characteristic (2 - 2k)). The relation between the topology
of surface and the zero modes is the consequence the index theorem [see, e.g., Green et al.
(1987)]. In our case the elliptical operator is square of operator V (see a discussion in
[Green et al. (1987)]).

The equations of compatibility of strains in the conformal gauge we may write as:

3.3. The shell theory
We consider a non-trivial application of the conformly invariant theory of elasticity

to the shell theory. If the surface of a shell has global isotermic coordinates (u, 0), then we
have a map from the domain U c:; R 2 to the surface, where a point (u, 0) E U. Consequently,
the metric of the plane 9 = du2 + d02 and the metric of the surface h = e"'g = e"'( du2+ d(2

)

are conformly equivalent. If the shell is a minimal surface then we can write complete
formulae. We use a Weierstrass representation [see, e.g., Tuzilin and Fomenko (1991)]:
(U, ill, e), where U c:; R2 is the path connected domain, ill is the holomorphic I-form on U,
eis the meromorphic function on U.

For example, consider the Weierstrass representation (U,fdw, e), where f is a hol­
omorphic function, ill = fdw, w = u+io is the complex coordinate on U. Then the equations

describe in a Euclidean space some minimal surface N, where (x,Y,z) are the standard
coordinates. Consider the tensor of stresses on U:
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to assign the conformal weights so that:

Under Q = - (n+4) (see formula (12»:

, '2 lf12(1 1()1 2)2(e ll
eik = A eik = +

e2l

under Q = -(n+2) (see formula (13» we have:

(30)

(31)

(32)

It is easy to understand that by means of eqns (30)-(32) we "lift" the solution from U to
the minimal surface N.

3.4. The plasticity theory
We analyse the conformal anomalies of the biharmonic operator in the context of the

plasticity theory. Consider the Prandle-Rice theory (Mises plasticity model) [see, e.g.,
Pluvinage (1989)]. Erie's function is a solution for the equation:

/).2F+ (the plasticity terms) = O. The plasticity terms are:

where (x, y) are Euclidean coordinates, aT is the yield limit: a} = a;x +a;y - axxayy +3a;Y'
N is a coefficient, rt is the technical constant [see Pluvinage (1989) for the notation]. Let us
assume that

i.e., a~- J = A(x2+ y2) +B, where A and B are constants (for example: A = 1, B = 0). We
have:

(33)

Consider eqn (27): from il'2 F =0 we obtain {4lYb-4lVb-2Vbl}ilF+il2F= 0
(P = 0, F = F). If ilF = const #- 0 (the Poisson's equation) and

then eqns (27) and (33) are identical. Since h = ).2g = A2( dx2 + dy2), it follows that:

((
0In),)2 (0 In A)2) Al 1 « 2 2) -1)-14 ~ + ----a;;- - 2u n I\. = X +Y + rt • (34)

Note that 2illn). = ),2R', where R' is the scalar curvature of the metric h. Consider the case
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A = A(r), where r = Jx2+ y2. We obtain from eqn (34) :

3333

(35)

where the stroke denotes differentiation.
Suppose that R' is constant, i.e., a Gauss curvature K = - 2R' = - 1, 0 or 1, respec­

tively. It is known [see Dubrovin et al. (1986)] that h can be written locally as:

are the constants, i.e., R' = -8cbja2. Substituting A into eqn (35), we have:
(16c2r2+ 8cb)(r2+ eel) = (b+ cy2)2. Therefore, c = b = 0 and h is singular.

The conclusion: if the scalar curvature of the metric h is not a constant then the
conformal anomaly of the biharmonic operator describes the plasticity effects.

4. EXAMPLES

4.1. Lame's problem
We consider an axially symmetric tension for an infinite domain U with the circular

opening (the particular case of Lame's problem), 9 = dx2+ di. The boundary conditions
are: (J" = - Pa under r = a, (Jrr = 0 under r = 00, where (Jrn (J",,,, are the physical components
of the tensor of stresses in polar coordinates: (JII = (Jrn (J22 = (J",,,,r- 2. We have [see Hahn
(1985)] : (Jrr = - Pa(ar- I )2, (J",,,, = Pa(ar- I )2. The trace tensor ofstresses equals zero, therefore
the equations of equilibrium are c.i.: V;(J'ik = V;(}.-4(Jik) = A-4Vp ik. Since h = f*g = ).29,
wherefis some (bi)holomorphic transformation, it follows that the tensor (J'ik = A-4(f*(J),k
satisfies the equations of equilibrium for any domain V: U = f( V). If we use the complex
notations then :f: Wf--+Z = few), where Z = x+iy, w = u+iv, A-4 = Idzjdwl 4

• For example
consider the inversion (i.e., V is a disk): f: Wf--+ Z = 1jw, where Z = rei"" w = pete, A2= p4,
lal = 1, h = du2+dv2= dp2+ p2d02. We have: (J'll = -Pap-2, (J'22 = Pap-4; (J~p = -Pap-2,
(Jee = Pap-2, i.e., the solution has a singularity. It can be shown that: under Q = -(n+4)
A'ijk" = p-\pHW" + v(h'kli" + hi"lik)) (Vis the heterogeneous disk) and under Q = - (n+2)
A""m" = pHJhk"+ v(hikli" + hi"lik) (Vis the isotropic disk).

4.2. Plane and cylinder
Let M = R 2

_ {O} be the plane without the beginning of coordinates, 9 == fJ. If we
consider the polar coordinates (r, cp) then N = R 2

_ {O} is a cylinder with the metric
h == fJjy2 = dr2jy2 + dcp2. Consider the solution of Lame's problem from Section 4.1 :

After the transfer we obtain for the cylinder (A2 = r- 2
) :

the physical components are:

4.3. Ellipsoid
Consider an ellipsoid x2ja2+ija2+z2 = 1, where (x,y,z) are Cartesian coordinates,
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a ~ I. After the stereographic projection we have:

2a2u 2a2v 2a2

x= , y= , z=I-----
u2 +v2 +a2 u2 + v2 +a2 u2 + v2 +a2

'

where (u, v) are the coordinates of the XO Y-plane (the "equatorial" plane). In the polar
coordinates (r = J u2 +v2

, cp = arctg(u/v)) the metric of ellipsoid can be written as:

We wish to find a transformation f = f(r); ijJ = cp such that 9 = )..2(f, ijJ) (df2 +p2 dijJ2). It
can be shown that

where ro is a constant. Finally, we obtain:

4.4. Enepper surface
We consider the Weierstrass representation (C, dw, w), where w = dw, () = w,

w = u+iv, C is a complex plane. The equations:

p3 . p3.
X = pcos cp- 3cOS 3cp, y = - p sm cp- 3sm 3cp, z = p2 cos 2cp

describe the Enepper surface [see Tuzilin and Fomenko (1991)], where (p, cp) are polar
coordinates of the w-plane. Consider (on C) the field of stresses:

. (A(J'k = B

where A, B are constants, (J3 j = 0, j = 1,2,3.
Thus the equations of equilibrium are true. If the w-plane is the isotropic solid then:

I (Aeik = -(1 +v)
E B

where E is the Young's modulus, v is the Poisson's coefficient. In the orthotropic case we
have:

33 I 22 I 12 I 12 I
e =-E (VI3+ V23)(J = --E (VI3+ v23)A,e =-2-(J =-2- B.

3 3 /l12 /l12

E;, Vik' /lik are technical constants.



Invariant theory of elasticity

By means of formulas (10)-(16) and (30)-(32) we can now establish:

A2 = eljJ = IN(1+llW)2 = 1'(1+lwI2)2 =(1+U2+V2)2 =(1+p2)2,

alik
= A- 4 aik =(1+P2)-4(; ~A}

under Q = -(n+4) (eqn (12)):

under Q = -(n+2) (eqn (13)):

3335

In the orthotropic case we may calculate by analogy with the isotropic case. It is important
to understand that we calculate the component em by means of the formula

where E;, V;k are the technical constants after the conformal change of the metric. So, we
"lift" the solution from R2 to the Enepper surface. These calculations are correct for other
minimal surfaces. For example: catenoid: Weierstrass representation (C- {O}, dwj2w2, w);
conformal multiplier ;,2

Richmond surface: (C-{O), w2dw, Ijw2); p4(1+p-4)2. Partial Scherk surface:
(u= {Iwl < I}, dwj(1-w4),w);

Note that catenoid and helicoid are locally isometric.
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